Weakly Supervised Object Co-Localization via Sharing Parts Based on a Joint Bayesian Model

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian learning for weakly supervised object classification

We explore the extent to which we can exploit interest point detectors for representing and recognising classes of objects. Detectors propose sparse sets of candidate regions based on local salience and stability criteria. However, local selection does not take into account discrimination reliability across instances in the same object class, so we realise selection by learning from weakly supe...

متن کامل

Weakly Supervised Object Localization Using Size Estimates

We present a technique for weakly supervised object localization (WSOL), building on the observation that WSOL algorithms usually work better on images with bigger objects. Instead of training the object detector on the entire training set at the same time, we propose a curriculum learning strategy to feed training images into the WSOL learning loop in an order from images containing bigger obj...

متن کامل

Improved Techniques For Weakly-Supervised Object Localization

We propose an improved technique for weakly-supervised object localization. Conventional methods have a limitation that they focus only on most discriminative parts of the target objects. The recent study addressed this issue and resolved this limitation by augmenting the training data for less discriminative parts. To this end, we employ an effective data augmentation for improving the accurac...

متن کامل

Attention Networks for Weakly Supervised Object Localization

We consider the problem of weakly supervised learning for object localization. Given a collection of images with image-level annotations indicating the presence/absence of an object, our goal is to localize the object in each image. We propose a neural network architecture called the attention network for this problem. Given a set of candidate regions in an image, the attention network first co...

متن کامل

Weakly Supervised Object Localization with Stable Segmentations

Multiple Instance Learning (MIL) provides a framework for training a discriminative classifier from data with ambiguous labels. This framework is well suited for the task of learning object classifiers from weakly labeled image data, where only the presence of an object in an image is known, but not its location. Some recent work has explored the application of MIL algorithms to the tasks of im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2018

ISSN: 2073-8994

DOI: 10.3390/sym10050142